
3GPP TS 23.040 V5.1.0 (2001-09)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Terminals;

Technical realization of the Short Message Service (SMS);

(Release 5)

[image: image1.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UMTS, GSM, SMS

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).

All rights reserved.

	3GPP TSG-T2 #15

Cancun, Mexico

26-30 November 2001
	T2-0111021

	CR-Form-v4

	CHANGE REQUEST

	

	(

	23.040
	CR
	CRNum
	(

rev
	-
	(

Current version:
	5.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Polyphonic Sound Format for EMS

	
	

	Source:
(

	Digiplug

	
	

	Work item code:
(

	TEI5
	
	Date: (

	

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	The only supported sound format in EMS is a monophonic sound format (iMelody). This CR proposes to add the Digiplug polyphonic sound format as an extended object in EMS.

	
	

	Summary of change:
(

	The Digiplug polyphonic sound format type will be included in the list of supported extended objects for EMS.
The format of the Digipluf polyphonic sound format is specified in annex E.

	
	

	Consequences if
(

not approved:
	EMS will not support the proposed polyphonic sound format.

	
	

	Clauses affected:
(

	

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request
9.2.3.24.10.1.11
Extended Object

The Extended Object allows an extended code range for format types. The Extended Object may extend across segment boundaries of a concatenated short message. Octets 1 through 7 of the first Extended Object IE shall be contained in a single segment. A single segment may include one or more Extended Object IEs.

If multiple SMs are concatenated and at least one of them contains an Extended Object information element, then concatenation of the SMs shall be done using the 'Concatenated short messages, 16-bit reference number', verses the 'Concatenated short messages, 8-bit reference number' information element. The re-assembly of the Extended Object segments shall be done according to the sequence number of the associated Concatenation IE.

One or more Extended Objects may be compressed using a compression algorithm as indicated in the Compression Control IE (see clause 9.2.3.24.10.1.13).

An SME implementing the Extended Object IE shall be capable of interpreting an uncompressed concatenated message composed of at least min_eo_msg short messages which have been received. According to current content provider requirements and handset manufacturer constraints, variable min_eo_msg is set to 8.

The first Extended Object IE of an Extended Object contains a reference number, length, control data, type and position. The subsequent Extended Object IEs shall only contain Extended Object data as illustrated in Figure 9.2.24.10.11.

The IE length is variable.

Octet 1
Extended Object reference number.
A modulo 256 counter indicating the reference number for the Extended Object. Two different Extended Objects in a single concatenated message shall have different reference numbers.

Octet 2..3
Extended Object length in number of octets (integer representation) as shown in Figure 9.2.3.24.10.1.11.

Octet 4
Control data.

Bit 0

Object distribution

0 Object may be forwarded

1 Object shall not be forwarded by SMS

Bit 1

User Prompt Indicator

0
Object shall be handled normally
1
Object shall be handled as a User Prompt (see 9.2.3.24.10.1.10)

Bit 2..7
reserved

Any reserved values shall be set to 0.

Octet 5
Extended Object Type.
This octet indicates the format of the Extended Object from the table below.
If the value is reserved or if the associated format is not supported then the receiving entity shall ignore the Extend Object.

	Format Type
	Format Description

	0x00
	Predefined sound as defined in annex E.

	0x01
	iMelody as defined in annex E.

	0x02
	Black and white bitmap as defined in annex E.

	0x03
	2-bit greyscale bitmap as defined in annex E.

	0x04
	6-bit colour bitmap as defined in annex E.

	0x05
	Predefined animation as defined in annex E.

	0x06
	Black and white bitmap animation as defined in annex E.

	0x07
	2-bit greyscale bitmap animation as defined in annex E.

	0x08
	6-bit colour bitmap animation as defined in annex E.

	0x09
	vCard as defined in annex E.

	0x0A
	vCalendar as defined in annex E.

	0x0B
	Polyphonic sound format as defined in annex E

	0x0C .. 0xFE
	Reserved

	0xFF
	Data Format Delivery Request as defined in annex E.

Octet 6..7
Extended Object Position (integer representation).
The Extended Object Position indicates the absolute character position within the message text after which the object shall be played or displayed. The absolute character position relates to the entire text within the concatenated message, the first character is numbered character 1.

If more than one Extended Object is located at the same position then they may be played or displayed in sequence or simultaneously.

Octet 8..n
Extended Object Data.
This sequence of octets is structured as illustrated in the figure below and defined annex E. This figure illustrates the construction of a number of SMs containing a large Extended Object which crosses a SM boundary and is encoded into 2 SM TPDUs. The figure illustrates only the User Data field of the SM (TPDUs). For a description of concatenation of SM refer to Figures 9.2.3.24 (a, b and c)

[image: image2.wmf]Control

Byte

Reference

 Data

Length

Positioning

 Information

Extended Object Data

1

2,3

4

5

6,7

Type

Identifier

Extended Object Header Information

Extended Object Data

Octet Number

UDHL

Concatenation Info

IEI

E.O.*

IEIDL

Extended Object Header

Extended Object Data

Concatenation Info

IEI

E.O.*

IEIDL

Continuation of Extended Object Data

TPDU 2

TPDU 1

8.....n

* E.O. means Extended Object

UDHL

Figure 9.2.3.24.10.1.11

...

Annex E (normative):
Extended Object Format Type

E.1
Predefined Sound

The predefined sound as integrated in the Extended Object IE is structured as follows:

Octet 8
Sound number as defined in table of clause 9.2.3.24.10.3.1.

E.2
iMelody

An iMelody object [33] can be integrated in an Extended Object IE with the following structure:

Octet 8..n
iMelody object coded according to the iMelody format [33].

E.3
Black and white bitmap

The user-defined black and white bitmap as integrated in the Extended Object IE is structured as follows:

Octet 8
Horizontal dimension of picture.
This octet shall contain the horizontal number of pixels

Octet 9
Vertical dimension of picture.
This octet shall contain the vertical number of pixels.

Octet 10..n
Picture data, pixel by pixel from top left to bottom right. The picture data is encoded as a continuous sequence of bits. There shall be no fill bits at the end of each row of data, Fill bits may only be used in the last octet of the picture data if needed. The fill bits in the last octet shall be ignored. Within each octet the MSB represents the leftmost pixel.

The colour values are encoded as follows:

Bit Value

Colour
0

White
1

Black

E.4
2-bit greyscale bitmap

The user-defined 2-bit greyscale bitmap as integrated in the Extended Object IE is structured as follows:

Octet 8
Horizontal dimension of picture.
This octet shall contain the horizontal number of pixels

Octet 9
Vertical dimension of picture.
This octet shall contain the vertical number of pixels.

Octet 10..n
Picture data, pixel by pixel from top left to bottom right. The picture data is encoded as a continuous sequence of bits. There shall be no fill bits at the end of each row of data, Fill bits may only be used in the last octet of the picture data. The fill bits in the last octet shall be ignored.The pair of bits at the MSB represents the leftmost pixel of the four defined in an octet.

The colour values are encoded as follows:

Bit Value

Colour
00

Black
01

Dark Grey
10

Light Grey
11

White

E.5
6-bit colour bitmap

The user-defined 6-bit colour bitmap as integrated in the Extended Object IE is structured as follows:

Octet 8
Horizontal dimension of picture.
This octet shall contain the horizontal number of pixels

Octet 9
Vertical dimension of picture.
This octet shall contain the vertical number of pixels.

Octet 10..n.

Picture data, pixel by pixel from top left to bottom right. The picture data is encoded as a continuous sequence of bits. There shall be no fill bits at the end of each row of data, Fill bits may only be used in the last octet of the picture data. The fill bits in the last octet shall be ignored.

Each pixel colour is represented by 6-bits of data, giving a total of 64 colours. (2 bits of data define the levels of each red, green and blue). The overall pixel colour is a composite of the three RGB values.

The first pair of bits of picture data define the level of red of the topmost, leftmost pixel, the next pair of bits the level of green for this pixel, and the third pair the level of blue for the pixel. The first bit of a pair defining a colour level is the MSB. This is illustrated below.

	Octet 1

	Bit 7
	Bit 6
	Bit 5
	Bit 4
	Bit 3
	Bit 2
	Bit 1
	Bit 0

	MSB Red

Pixel 1
	LSB Red
Pixel 1
	MSB Green

Pixel 1
	LSB Green

Pixel 1
	MSB Blue
Pixel 1
	LSB Blue
Pixel 1
	MSB Red
Pixel 2
	LSB Red

Pixel 2

	Octet 2

	Bit 7
	Bit 6
	Bit 5
	Bit 4
	Bit 3
	Bit 2
	Bit 1
	Bit 0

	MSB Green

Pixel 2
	LSB Green

Pixel 2
	MSB Blue
Pixel 2
	LSB Blue
Pixel 2
	MSB Red
Pixel 3
	LSB Red

Pixel 3
	MSB Green

Pixel 3
	LSB Green

Pixel 3

E.6
Predefined animation

The predefined animation as integrated in the Extended Object IE is structured as follows:

Octet 8
Animation number as defined in table of clause 9.2.3.24.10.3.3.

E.7
Black and white bitmap animation

The user-black and white animation is integrated in the Extended Object IE is structured as follows:

Octet 8
Horizontal dimension of picture.
This octet shall contain the horizontal number of pixels.

Octet 9
Vertical dimension of picture.
This octet shall contain the vertical number of pixels.

Octet 10
The number of frames in the animation.

Octet 11
Animation control byte.

	Bits
	Meaning

	7 – 4
	Frame display. The value (in tenths of a second) that is requested between each frame: 0000 1 tenth (i.e. 0.1s) 1111 16 tenths (i.e. 1.6 s)

	3 – 0
	Repeat value. The requested number of repetitions of the animation: 0000 Unlimited repetition 0001 1 repetition 1111 15 repetitions

Octet 12..n
Contains a series of bitstreams encoding 1 bit pixel depth bitmaps as defined in F.3. If a frame in the animation would require fill bits (as described in F.3) these shall be contained at the end of the frame such that the bit-stream for the next frame begins on an octet boundary.

E.8
2-bit greyscale bitmap animation

The user-black and white animation is integrated in the Extended Object IE is structured as follows:

Octet 8
Horizontal dimension of picture.
This octet shall contain the horizontal number of pixels.

Octet 9
Vertical dimension of picture.
This octet shall contain the vertical number of pixels.

Octet 10
The number of frames in the animation.

Octet 11
Animation control byte.

	Bits
	Meaning

	7 – 4
	Frame display. The value (in tenths of a second) that is requested between each frame: 0000 1 tenth (i.e. 0.1s) 1111 16 tenths (i.e. 1.6 s)

	3 – 0
	Repeat value. The requested number of repetitions of the animation: 0000 Unlimited repetition 0001 1 repetition 1111 15 repetitions

Octet 12..n
Contains a series of bitstreams encoding 2 bit pixel depth bitmaps as defined in F.4. If a frame in the animation would require fill bits (as described in F.4) these shall be contained at the end of the frame such that the bit-stream for the next frame begins on an octet boundary.

E.9
6-bit colour bitmap animation

The user-black and white animation is integrated in the Extended Object IE is structured as follows:

Octet 8
Horizontal dimension of picture.
This octet shall contain the horizontal number of pixels.

Octet 9
Vertical dimension of picture.
This octet shall contain the vertical number of pixels.

Octet 10
The number of frames in the animation.

Octet 11
Animation control byte.

	Bits
	Meaning

	7 – 4
	Frame display. The value (in tenths of a second) that is requested between each frame: 0000 1 tenth (i.e. 0.1s) 1111 16 tenths (i.e. 1.6 s)

	3 – 0
	Repeat value. The requested number of repetitions of the animation: 0000 Unlimited repetition 0001 1 repetition 1111 15 repetitions

Octet 12.n
Contains a series of bitstreams encoding 6 bit pixel depth bitmaps as defined in F.5. If a frame in the animation would require fill bits (as described in F.5) these shall be contained at the end of the frame such that the bit-stream for the next frame begins on an octet boundary.

E.10
vCard

A vCard object [36] can be integrated in a Extended Object IE with the following structure:

Octet 8.n
vCard object as defined in [36]. The UTF-8 encoding is used instead of the default 7-bit ASCII. For certain vCard properties, other encoding can be used by setting the CHARSET property parameter to the appropriate character set.

E.11
vCalendar

A vCalendar object [37] can be integrated in a Extended Object IE with the following structure:

Octet 8..n
vCalendar object as defined in [37]. The UTF-8 encoding is used instead of the default 7-bit ASCII. For certain vCalendar properties, other encoding can be used by setting the CHARSET property parameter to the appropriate character set.

E.12
Data Format Delivery Request

This Data Format Delivery Request is an optional feature used by an SME to indicate which Extended Object data formats, listed in clause 9.2.3.24.10.1.11, it is requesting for delivery. This Data Format Delivery Request may be included by an SME in a MO SM containing other EMS related data, or in a MO SM independently. Processing of this data format is optional in a MT short message.

The information in this data format represents an extensible bit field with the first bit being mapped to the first Extended Object (EO) data format defined in the table in clause 9.2.3.24.10.1.11.

Octet 8

Bit 0: If set to 1 indicates support for EO data format 00

Bit 1: If set to 1 indicates support for EO data format 01

Bit 2: If set to 1 indicates support for EO data format 02

……

……

Octet n

Bit 0: If set indicates support for EO data format ((n – 8) * 8)

Bit 1: If set indicates support for EO data format ((n – 8) + 1

Bit 2: If set indicates support for EO data format ((n – 8) + 2

…….

Any unused bits in the last octet shall be set to zero.

 E12 Polyphonic Sound

Octets 8…n. A bit stream conforming to the Digiplug GSM Ringtunes format . This format supports the encoding of melodies to a device of up to 16 music channels. The format provides full support for channel timbre, volume and duration.
E 12.1 Digiplug polyphonic sound header.

The Digiplug polyphonic sound header contains the identifier of the format and the version that allows to determine the type of the melody. It also contains two bytes two octets dedicated to the integrity checking and copy status management.
Octet 8 …9
Digiplug polyphonic format identifier

Octet 8 : Byte set to 0x44, the ASCII value ‘D’

Octet 9 : Byte set to 0x48, the ASCII value ‘H’

Octet 10
Melody type.

	Melody Type
	Melody Description

	0x21
	Mono channel melody

	0x22
	Multi channel melody

Octet 11…12
Check sum and copy status bytes.
These two octets contain the copy status informations and the check sum allowing the MS to check the integrity of the received data. These informations shall be coded as follows:

	Octet 11
	Octet 12

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Reserved
	Check Sum MSB
	Check Sum LSB
	Copy Status

Reserved bits 15…12 shall be set to [0000]
Check sum bits 11…4 shall represent the result of the check sum calculation (refer to clause E12.2)
Copy Status bits 3..0
shall be coded as follows:
Bit 1

Send bit – if set, the handset is entitled to forward the ringtune without limitation. If not set, the handset is entitled to forward the ringtune according to the value of the Copy Number bits.
Bit 0

Save bit – if set, the handset is allowed to save the ringtone to some persistence store (other than the default ringtune storage).
Bits 3..2
Copy Number bits – shall be used as a copy number controler incremented each time a forward of the ringtune is made and only if the Send bit is not set. 4 copies maximum are allowed. By default the number of copy must be set to 0.
E 12.2 Check Sum
The check sum allows the checking of the data integrity. It is represented in one octet by an integer value modulo 256. This value shall be calculated after completion of the compression of the melody. It concerns only melody data i.e. data coded from Octet 13 and onward. The check sum value is the sum of the Octet values from the Octet 18 to the last one of the compressed ringtune. The resulting value must then be added to 7 and represented modulo 256.
From Octet 13 onward the Digiplug polyphonic GSM ringtune format uses tokens that do not fall on octet (BYTE) boundaries therefore the format must be regarded as a bitstream. The tokens in this bit stream may be between 3 and 9 bits long and build together into a number of compound commands (and will be described as such). For all subsequent commands, bit 7 (rhb) is the most significant bit and for commands greater than 8 bits long, the byte order is NETWORK BYTE ORDER

The compound fields that make up the remainder of the format are comprised as follows and occur in the following order.

E 12.3 Polyphonic song title

A variable length field encoding the title of the song and its length.
Octet 13
Song title length : bits 7...4 specify the length of the char string between 0 and 15 characters

Octet 14…
Up to 15 ASCII characters making up the song title, the first character of the title (if present) comprises octet 12 (bits 3..0) and octet 13 (bits 7..4) and etcetera for the other title characters.

E 12.4 Number of tones field

A 8 or 16-bit field representing the number of tones in the ringtune melody. This field can be considered as 1 or 2 bytes (although these bytes fall on nibble rather than byte boundaries)

Byte 0

bits 6..0
the number of tones in the ringtune (up to 127)

bit 7

if set indicates the presence of an 8-bit field representing the 8 MSB of a 15-bit tone number

Byte 1 (if present) comprises the 8 MSB (bits 14…7) of a 15-bit number. The previous Byte holds bits 6-0 of this
number.

E 12.5 Polyphonic Melody

E 12.5.1 Number of Channels Command
The number of channels command indicates the number of channels used in the following ringtune. It is a 12-bit field formatted as follows.

	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Multi-Channel-Specifier
	Number-of-Channel-Specifier
	Channel-Value

The Multi-Channel-Specifier is an explicit field identifier and is set to [11101]

The Number-of-Channel-Specifier field is a 3-bit value and is set to [000] .

The Channel-Value field in this command is a 4-bit encoding representing the number of channels in the following ring tune. The value may take values from [0000] to [1111] giving a maximum of 16 channels.
E 12.5.2 Tempo Command

The Tempo Command is a 14-bit field dedicated to the informations of tempo in the ringtune melody. This command is formatted as follows:

	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Tempo-Command-Specifier
	Tempo-Value

The Tempo-Command-Specifier is an explicit 5-bit field identifier and is set to [01110]
The Tempo-Value is the “beats per minute” for the ringtune. It is a 9-bit field set to [001111000] 120 bpm by default but may be from [000000000] to [111111111] (0-511).
E 12.5.3 Channel Melody Encoding

The reminder of the encoding comprises a sequence of Rythmic-Section and Note-Section. For each pair of these commands the Rythmic-Section describes the effective channel, and the duration of every note in that channel of the ringtune. The Note-Section describes the note value of every note in that channel of the ringtune. Additionally, the Note-Section may encode “effects” or “instrument-assignment” operations.

E 12.5.3.1 Rythmic Section

The Rythmic-Section is encoded in 3 field types. These commands occur in the following order.

1. A Channel-Selection-Command: A 12-bit field specifying the number of the channel concerned by the rhythm and melody data that follows

2. A serie of Rhythm-Commands (variable length)

3. An End-Rythmic-Section-Specifier. This is a 5-bit field indicating the completion of a Rythmic-Section-Command. This field will ALWAYS be followed by a Note-Section-Command concerning the channel previously selected with the Channel-Selection-Command of the Rythmic-Section. This field is explicitly set to [11111].

E 12.5.3.1.1 Channel Selection Command

The Channel-Selection-Command is a 12-bit fixed length field setting the channel data for the rhythm and melody information that follows. The field is formatted as follows;

	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Multi-Channel-Specifier
	Channel-Selection-Specifier
	Channel-Value

The Multi-Channel-Specifier is an explicit field identifier and is set [11101].

The Channel-Selection-Specifier is a 3-bit field explicitly set to [001] for Channel-Selection-Commands.

The Channel-Value is a 4-bit field encoding the number of the channel that the following rhythm and melody data will be played in. The value [0000] represents channel 0 and [1111] channel 15.

E 12.5.3.1.2 Rythmic Command
The Rythmic-Command consists of an array of tokens. These tokens represent the durations of corresponding notes in the following Note-Section.

Tokens in this section either represent the durations of individual notes, defined sequences of note durations or repeated patterns of sequences of note durations. These tokens may appear in any order. These tokens are expanded into an array of defined periods which exactly correspond to a similarly expanded note frequency array extracted from the following Note-Section.

The tokens may be any of the following:
1. Duration-Value (5-bits) representing the duration of a given note (or sequence of notes).
2. Change-Tempo-Specifier (5-bits) modifying the tempo of the subsequent rhythm section.
3. Rythmic-Pattern-Marker-Command (8-bits) used to define rythmic patterns. It allows to increase the compressionof the Rythmic-Section when redundant rhythm sequences are identified.

4. Rythmic-Pattern-Play-Command (12-bits) defines the use in the Rythmic-Section of a Rythmic-Pattern according to the unique identifier associated with each pattern .
E 12.5.3.1.2.1 Duration Value (5-bits)

In the Rythmic-Section, a note or a sequence of notes may be represented with a duration value. The set of available durations issues from a statistical study. This study made in cooperation with musicians allowed to identify the 24 rhythms and rhythm-groups more frequently used in order to reduce the size of Rhytmic-Section.

 The following 5-bit sequences represent the resulting set of note durations:
[00000] – represents a semiquaver.

[00001] – represents a dotted semiquaver.

[00010] – represents a double dotted semiquaver.

[00011] – represents a quaver.

[00100] - represents a dotted quaver.

[00101] – represents a double dotted quaver.

[00110] – represents a crotchet.

[00111] – represents a dotted crotchet.

[01000] – represents a double dotted crotchet.

[01001] – represents a represents a minim.

[01010] – represents a dotted minim.

[01011] – represents a double dotted minim.

[01100] to [10000] – NOT USED- Matching bit-sequences occur elsewhere.

[10001] – represents a semiquaver followed by a semiquaver

[10010] – represents the sequence “semiquaver, semiquaver, quaver”.

[10011] – represents a sequence of 4 semiquavers.

[10100] – represents a semiquaver followed by a dotted quaver.

[10101] – represents a sequence of 2 quavers.

[10110] – represents a sequence of 4 quavers.

[10111] – represents the sequence “quaver, semiquaver, semiquaver”.

[11000] – represents a quaver followed by a dotted crotchet.

[11001] – represents a dottet quaver followed by a semiquaver.

[11010] – represents a crotchet followed by a crotchet.

[11011] – represents a dotted crotchet followed by a quaver.

[11100] – represents the sequence “dotted crotchet – semiquaver - semiquaver”
[11101] to [11111] – NOT USED.

E 12.5.3.1.2.2 Change-Tempo-Specifier (5-bits)

When the set of durations previously defined in clause E 12.5.3.1.2.2 doesn’t contain the desired value, the Change-Tempo-Specifier allows to multiply or divide the current tempo for the subsequent notes in order to obtain the correct duration. The tempo value is applied until the next occurency of the Change-Tempo-Specifier. Despite of a basic list of 24 durations, it is in fact possible to encode 72 durations.

The Change-Tempo-Specifier is a 5-bit field modifying the tempo as follows:
[01100] – low tempo specifier, divides the tempo by 16.

[01101] – high tempo specifier, multiplies the tempo by 16.

E 12.5.3.1.2.3 Rythmic Pattern Marker Command (8-bits)
If a rhythm sequence is identified as recurrent in the ringtune, the Rythmic-Pattern-Marker-Command allows to define a rythmic pattern containing this sequence. It is possible to create up to 8 Rythmic-Patterns, and to re-use each of them everywhere in the Rythmic-Section. The Rythmic-Pattern-Marker-Command must begin and end a rhytmical pattern.
The Rythmic-Pattern-Marker-Command is an 8-bit command formatted as follows;

	7
	6
	5
	4
	3
	2
	1
	0

	Rythmic-Pattern-Marker-Specifier
	Pattern-Number-Value

The Rythmic-Pattern-Marker-Specifier is an explicit 5-bit field set to [01111].

The Pattern-Number-Value is a 3-bits field defining the number of the pattern to be encoded. This number is used to uniquely identify and reference a pattern several times in a melody.
Between the beginning and ending Rythmic-Pattern-Marker-Command, duration values are coded by the same way as outside the pattern definition.

Ex: [01111][001] [00011] [00110] [00110] [01111][001]
This rythmic pattern is identified as the number 1and contains three durations, a quaver followed by two crotchets
E 12.5.3.1.2.4 Rythmic Pattern Play Command (12 bits)
The Rythmic-Pattern-Play-Command is used to specify the use of a known rythmic pattern (see clause E 12.5.3.1.2.4).
This command is a 12-bit field formatted as follows;

	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Rythmic-Pattern-Play-Specifier
	Pattern-Number-Value
	Pattern-Repeat-Value

The Rythmic-Pattern-Play-Specifier is an explicit 5-bit field identifier and is set to [10000].

The Pattern-Number-Value represents the number of the known pattern to be used and is as defined in clause E 12.5.3.1.2.3.
The Pattern-Repeat-Value is a 4-bit field representing the number of repeats of the pattern to be played. It is set from [0000] up to [1111].
E 12.5.3.2 Note Section
The Note-Section contains the definition of the octaves and height of each note in the active channel of the ringtune and eventually the volume of the channel. Two representations are used for a note, the absolute and the relative representation. The absolute encoding of a note entirely and uniquely defines the height and octave number of the tone. The relative encoding is related to the previous note. The relative representation is only possible if two successive notes are not separated by more than seven half-tons. Consequently, the relative notes will be preferred to the absolute representation except when necessary (especially for the first note of a channel). The Note-Section may also contain up to 8 Note-Patterns. A Note-Pattern is defined as a sequence of notes which is repeated several times in a same channel of the ringtune. A pattern may also include several patterns.
The Note-Section always immediately follows a Rythmic-Section and only concerns the channel previously selected with the Channel-Selection-Command in the Rythmic-Section. The Note-Section is encoded in 2 field types according to the following order:
1. A serie of Note-Commands (variable length)
2. An End-Note-Section-Specifier. This is a 4-bit field indicating the completion of a Note-Section. This field is explicitly set to [1101].
E 12.5.3.2.1 Note Command
The Note-Command consists of an array of tokens. These tokens represent either the note values (frequencies) of corresponding durations or pattern in the preceeding Rythmic-Section (E 12.4.3.1), or an instrument assignation or a volume command. When expanded (extracted) there will be one frequency value for each duration value in the extracted rhythm section.
The tokens may be any of the following:
1. Instrument Assignation Command, an 11-bit token assigning an instrument to a channel.

2. Absolute Note Command, a 15-bit token that encodes an absolute note value (frequency).
3. Relative Note Command, a 4-bit token that encodes a relative note.
4. Melody Pattern Marker Command, a 7-bits token that begins and ends a note pattern

5. Melody Pattern Play Command, a 11-bit token specifying the use of a known Note-Pattern
6. Volume Command, a 12-bit token encoding a volume change.

The Note-Section must always begin with an Instrument-Assignation-Command. This first command must absolutely be followed by an Absolute-Note-Command, a Melody-Pattern-Marker-Command or a Relative-Note only if it represents a pause. The subsequent command may occur in any order.
E 12.5.3.2.1.1 Instrument Assignation Command (15 bits)
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Note-Command-Separator
	Instrument-Assignation-Specifier
	Instrument-Identifier

The Note-Command-Separator is an explicit 4-bit field set to [1000] allowing to make the difference between the Relative-Note-Command and the others.

The Instrument-Assignation-Specifier is an explicit 4-bit field defining the assignation of an instrument as descibed in the GM standard (refer to the MIDI Manufacturers Association at http://www.midi.org) with the current channel in the ringtune. This field is set to [1010].

The Instrument-Identifier is a 7-bit field representing the number of the GM instrument reference to be associated. All instrument references are detailed in the table presented below:
	Identifier
	Instrument
	Identifier
	Instrument

	0000000
	ACOUSTIC GRAND PIANO
	1000000
	SOPRANO SAX

	0000001
	BRIGHT ACOUSTIC PIANO
	1000001
	ALTO SAX

	0000010
	ELECTRIC GRAND PIANO
	1000010
	TENOR SAX

	0000011
	HONKY-TONK PIANO
	1000011
	BARITONE SAX

	0000100
	ELECTRIC PIANO 1
	1000100
	OBOE

	0000101
	ELECTRIC PIANO 2
	1000101
	ENGLISH HORN

	0000110
	HARPSICHORD
	1000110
	BASSOON

	0000111
	CLAVI
	1000111
	CLARINET

	0001000
	CELESTA
	1001000
	PICCOLO

	0001001
	GLOCKENSPIEL
	1001001
	FLUTE

	0001010
	MUSIC BOX
	1001010
	RECORDER

	0001011
	VIBRAPHONE
	1001011
	PAN FLUTE

	0001100
	MARIMBA
	1001100
	BLOWN BOTTLE

	0001101
	XYLOPHONE
	1001101
	SHAKUHACHI

	0001110
	TUBULAR BELLS
	1001110
	WHISTLE

	0001111
	DULCIMER
	1001111
	OCARINA

	0010000
	DRAWBAR ORGAN
	1010000
	LEAD 1 (square)

	0010001
	PERCUSSIVE ORGAN
	1010001
	LEAD 2 (sawtooth)

	0010010
	ROCK ORGAN
	1010010
	LEAD 3 CALLIOPE|

	0010011
	CHURCH ORGAN
	1010011
	LEAD 4 (chiff)

	0010100
	REED ORGAN
	1010100
	LEAD 5 (charang)

	0010101
	ACCORDION
	1010101
	LEAD 6 (voice)

	0010110
	HARMONICA
	1010110
	LEAD 7 (fifths)

	0010111
	TANGO ACCORDION
	1010111
	LEAD 8 (bass + lead)

	0011000
	ACOUSTIC GUITAR (nylon)
	1011000
	PAD 1 (new age)

	0011001
	ACOUSTIC GUITAR (steel)
	1011001
	PAD 2 (warm)

	0011010
	ELECTRIC GUITAR (jazz)
	1011010
	PAD 3 (polysynth)

	0011011
	ELECTRIC GUITAR (clean)
	1011011
	PAD 4 (choir)

	0011100
	ELECTRIC GUITAR (muted)
	1011100
	PAD 5 (bowed)

	0011101
	OVERDRIVEN GUITAR
	1011101
	PAD 6 (metallic)

	0011110
	DISTORSION GUITAR
	1011110
	PAD 7 (halo)

	0011111
	GUITAR HARMONICS
	1011111
	PAD 8 (sweep)

	0100000
	ACOUSTIC BASS
	1100000
	FX 1 (rain)

	0100001
	ELECTRIC BASS (finger)
	1100001
	FX 2 (soundtrack)

	0100010
	ELECTRIC BASS (pick)
	1100010
	FX 3 (crystal)

	0100011
	FRETLESS BASS
	1100011
	FX 4 (atmosphÞre)

	0100100
	SLAP BASS 1
	1100100
	FX 5 (brightness)

	0100101
	SLAP BASS 2
	1100101
	FX 6 (goblins)

	0100110
	SYNTH BASS 1
	1100110
	FX 7 (echoes)

	0100111
	SYNTH BASS 2
	1100111
	FX 8 (sci-fi)

	0101000
	VIOLIN
	1101000
	SITAR

	0101001
	VIOLA
	1101001
	BANJO

	0101010
	CELLO
	1101010
	SHAMISEN

	0101011
	CONTRABASS
	1101011
	KOTO

	0101100
	TREMOLO STRINGS
	1101100
	KALIMBA

	0101101
	PIZZICATO STRINGS
	1101101
	BAGPIPE

	0101110
	ORCHESTRAL HARP
	1101110
	FIDDLE

	0101111
	TIMPANI
	1101111
	SHANAI

	0110000
	STRING ENSEMBLE 1
	1110000
	TINKLE BELL

	0110001
	STRING ENSEMBLE 2
	1110001
	AGOGO

	0110010
	SYNTH STRINGS 1
	1110010
	STEEL DRUMS

	0110011
	SYNTH STRINGS 2
	1110011
	WOODBLOCK

	0110100
	CHOIR AAHS
	1110100
	TAIKO DRUM

	0110101
	VOICE OOHS
	1110101
	MELODIC TM

	0110110
	SYNTH VOICE
	1110110
	SYNTH DRUM

	0110111
	ORCHESTRA HIT
	1110111
	REVERSE CYMBAL

	0111000
	TRUMPET
	1111000
	GUITAR FRET NOISE

	0111001
	TROMBONE
	1111001
	BREATH NOISE

	0111010
	TUBA
	1111010
	SEASHORE

	0111011
	MUTED TRUMPET
	1111011
	BIRD TWEET

	0111100
	FRENCH HORN
	1111100
	TELEPHONE RING

	0111101
	BRASS SECTION
	1111101
	HELICOPTER

	0111110
	SYNTH BRASS 1
	1111110
	APPLAUSE

	0111111
	SYNTH BRASS 2
	1111111
	GUNSHOT

E 12.5.3.2.1.2 Absolute Note Command (15 bits)
The Absolute- Note-Command is a 15-bit field formatted as follows:
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Note-Command-Separator
	Absolute-Note-Specifier
	Absolute-Note-Value

The Note-Command-Separator is an explicit 4-bit field set to [1000] allowing to make the difference between the Relative-Note-Command and the others.

The Absolute-Note-Specifier is an explicit 4-bit field indicating that the following note is an absolute one. This field is set to [0001].
The Absolute-Note-Value is a 7-bit field specifying the height and octave of the note. There are 128 possible values for the representation of an absolute note frequency. The Absolute-Note-Value field may be set from [0000000] to [1111111] (0-128).
For example, the hexadecimal value 0x3C (or binary 00111100) represents a middle (mid-range) C. Hexadecimal 0x3B (binary 00111011) represents one half tone below middle C (B) and hexadecimal 0x61 (binary 00111101) one half tone above (C#).
Absolute-Note-Value tokens are used in the Note-Section where it is not possible to use a Relative-Note i.e. for the first note of the section, where the dynamic difference from the preceding note is too large or following a rest.
 The Absolute-Note-Values and the corresponding heights and octaves are given in the following table:
	Oct.
	C
	C#
	D
	D#
	E
	F
	F#
	G
	G#
	A
	A#
	B

	0
	0000000
	0000001
	0000010
	0000011
	0000100
	0000101
	0000110
	0000111
	0001000
	0001001
	0001010
	0001011

	1
	0001100
	0001101
	0001110
	0001111
	0010000
	0010001
	0010010
	0010011
	0010100
	0010101
	0010110
	0010111

	2
	0011000
	0011001
	0011010
	0011011
	0011100
	0011101
	0011110
	0011111
	0100000
	0100001
	0100010
	0100011

	3
	0100100
	0100101
	0100110
	0100111
	0101000
	0101001
	0101010
	0101011
	0101100
	0101101
	0101110
	0101111

	4
	0110000
	0110001
	0110010
	0110011
	0110100
	0110101
	0110110
	0110111
	0111000
	0111001
	0111010
	0111011

	5
	0111100
	0111101
	0111110
	0111111
	1000000
	1000001
	1000010
	1000011
	1000100
	1000101
	1000110
	1000111

	6
	1001000
	1001001
	1001010
	1001011
	1001100
	1001101
	1001110
	1001111
	1010000
	1010001
	1010010
	1010011

	7
	1010100
	1010101
	1010110
	1010111
	1011000
	1011001
	1011010
	1011011
	1011100
	1011101
	1011110
	1011111

	8
	1100000
	1100001
	1100010
	1100011
	1100100
	1100101
	1100110
	1100111
	1101000
	1101001
	1101010
	1101011

	9
	1101100
	1101101
	1101110
	1101111
	1110000
	1110001
	1110010
	1110011
	1110100
	1110101
	1110110
	1110111

	10
	1111000
	1111001
	1111010
	1111011
	1111100
	1111101
	1111110
	1111111
	
	
	
	

E 12.5.3.2.1.3 Relative Note Command(4 bits)
The Relative-Note-Command is a 4-bit field encoding a note by the difference with its predecessor in the active channel. In order to make the difference between the Relative-Note-Command and the other tokens of the Note-Section, this field must only be set to one of the following values:
	Relative-Note-Command
	Offset

	[0111]
	7 half tones above the previous note

	[0110]
	6 half tones above the previous note

	[0101]
	5 half tones above the previous note

	[0100]
	4 half tones above the previous note

	[0011]
	3 half tones above the previous note

	[0010]
	2 half tones above the previous note

	[0001]
	1 half tone above the previous note

	[0000]
	unchanged note

	[1111]
	1 half tone below the previous note

	[1110]
	2 half tones below the previous note

	[1101]
	3 half tones below the previous note

	[1100]
	4 half tones below the previous note

	[1011]
	5 half tones below the previous note

	[1010]
	6 half tones below the previous note

	[1001]
	Silence encoding (rest period)

E 12.5.3.2.1.4 Melody Pattern Marker Command (7 bits)
The Melody-Pattern-Marker-Command is a 7-bit field used to define up to 8 Melody-Patterns. A Melody-Pattern is a suite of successive notes that is repeated several times in the active channel. The pattern definition allows to use only the identifier of a pattern instead of the suite of notes. The Melody-Pattern-Marker-Specifier must begin and end a Melody-Pattern. This token is formatted as follows:
	6
	5
	4
	3
	2
	1
	0

	Melody-Pattern-Marker-Specifier
	Pattern-Number-Value

The Melody-Pattern-Marker-Specifier is an explicit 4-bit field set to [0010].
The Pattern-Number-Value is a 3-bit field defining the number of the pattern to be encoded. This number is used to uniquely identify and reference a pattern several times in the Note-Section of a same channel.

Between the beginning and ending Melody-Pattern-Marker-Command, the notes or silences are coded by the same way as outside the pattern definition, except for the first note of the pattern. This first note must always be either a Relative-Note only set to [1001] (rest period) or an Absolute-Note.
E 12.5.3.2.1.5 Melody Pattern Play Command

The Melody-Pattern-Play-Command is used to specify the use of a known Melody-Pattern in the active channel (see clause E 12.5.3.2.1.4).
This command is a 11-bit field formatted as follows;
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Melody-Pattern-Play-Specifier
	Pattern-Number-Value
	Pattern-Repeat-Value

The Melody-Pattern-Play-Specifier is an explicit 4-bit field identifier and is set to [0101].

The Pattern-Number-Value is a 3-bit field that represents the number of the known pattern to be used and is as defined in clause E 12.5.3.2.1.4.

The Pattern-Repeat-Value is a 4-bit field representing the number of repeats (up to 15) of the pattern to be played. It is set from [0000] up to [1111].
E 12.5.3.2.1.6 Volume Command (8 bits)
The Volume-Command is an 8-bit field encoding the volume information. This command allows the assignation of a different volume level for each channel of the ringtune. It is possible to set up to 16 levels.
This token is formatted as follows:
	7
	6
	5
	4
	3
	2
	1
	0

	Volume-Specifier
	Volume-Value

The Volume-Specifier is an explicit 4-bit field identifier that is set to [1100].

The Volume-Value is a 4-bit field [0000] to [1111] indicating the volume level of the active channel.
E 12.5.3.2 End Note Section Specifier

The End-Note-Section-Specifier is an explicit 4-bit field indicating the end of a Note-Section. It may be the last sequence in the notation or it may immediately preceed another Rythmic-Section Note-Section pair concerning the next channel of the ringtune. This field must be set to [1101].
�PAGE \# "'PAGE: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'PAGE: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'PAGE: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'PAGE: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'PAGE: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'PAGE: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'PAGE: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'PAGE: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'PAGE: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'PAGE: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'PAGE: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'PAGE: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'PAGE: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'PAGE: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'PAGE: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'PAGE: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'PAGE: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'PAGE: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'PAGE: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'PAGE: '#'�'" �� This is an example of pop-up text.

_1052858959.doc

Control Byte

Reference

 Data Length

Positioning

 Information

Extended Object Data

1

2,3

4

5

6,7

Type

Identifier

Extended Object Header Information

Extended Object Data

Octet Number

UDHL

Concatenation Info

IEI

E.O.*

IEIDL

Extended Object Header

Extended Object Data

UDHL

Concatenation Info

IEI

E.O.*

IEIDL

Continuation of Extended Object Data

TPDU 2

TPDU 1

8.....n

* E.O. means Extended Object

